a2 United States Patent

US009183056B2

(10) Patent No.: US 9,183,056 B2

Hepkin et al. 45) Date of Patent: Nov. 10, 2015
(54) EXPANDING MEMORY SIZE (56) References Cited
(71) Applicant: International Business Machines U.S. PATENT DOCUMENTS
Corporation, Armonk, NY (US)
6,564,305 Bl 5/2003 Moore
(72) Inventors: David Alan Hepkin, Austin, TX (US); g’g%’ggg g} 411%8845‘ FDr;: 1:;' :f al.
Satya Prakash Sharma, Austin, TX 2002/0178333 Al 11/2002 Wilson et al.
(US); Saurabh Nath Sharma, Austin,
TX (US); Randall Craig Swanberg, OTHER PUBLICATIONS
Austin, TX (US) Nadarajan-et al.; “Analysis of String Matching Compression Algo-
. ithms”; INSPEC/J al of C ter Sci 1. 4, No. 3 pp.
(73) Assignee: INTERNATIONAL BUSINESS a0, 200 T O LOMPHIEr SEIECes O o PP
MACHINES CORPORATION, Wang-et al.; “The Feasibility of Using Compression to Increase
Armonk, NY (US) Memory System Performance”; INSPEC/MASCOTS *94; pp. 107-
113; 1994.
(*) Notice: Subject to any disclaimer, the term of this Keun Soo Yim-et al.; An On-Chip Cache and Main Memory Com-
patent is extended or adjusted under 35 pression System Optimized by Considering the Compression Rate
U.S.C. 154(b) by 255 days. Distribution . . . INSPEC/Journal of KISS, pp. 125-134, 2004.
(21) Appl. No.: 13/736,564 (Continued)
ppl. No.: X
(22) Filed: Jan. 8, 2013 Primary Examiner — Matthfzw Bradley .
(74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
(65) Prior Publication Data Rakesh Garg; Damion Josephs
US 2014/0195768 Al Jul. 10, 2014 (57) ABSTRACT
Related U.S. Application Data A system, and computer ysabl.e program prgduct for gxpand-
o o ing memory size are provided in the illustrative embodiments.
(63) Continuation of application No. 12/611,190, filed on A desired size of an expanded memory and a first information
Nov. 3, 2009, now Pat. No. 8,458,431. about a workload in the data processing system are received.
A size of a compressed memory pool to use with the memory
(51) Int. Cl. to make the desired size of the expanded memory available is
GOGF 12/00 (2006.01) computed. A representation of the memory is configured, the
GOGF 9/50 (2006.01) representation of the memory appearing to be of a size larger
(52) US.CL than the size of the memory, the representation of the memory
cre ... GO6F 9/5016 (2013.01); GO6F 2209/5011 being the expanded memory, and the size of the representa-
(2013.01) tion being the size of the expanded memory. The expanded
(58) Field of Classification Search memory is made available such that the memory in the data

CPC ... GOG6F 9/5077; GOGF 9/5016; GOGF
2209/5011
USPC i 711/171

See application file for complete search history.

RECEIVE A
THE EXPANDED MEKO!
m2

processing system is usable by addressing the expanded
memory.

20 Claims, 5 Drawing Sheets

DESIRED SIZE OF
RY

DETERMINE A
GOMPRESSION RATIO
'OF THE WORKLOAD
4

IWORKLOAD
CHANGED

)

RECEIVE ANY OTHER

FAGTORS TO CONSIDER IN THE

‘OPERATION OF THE MEMORY
iy

‘GOMPLITE A NEW
EXPANDED MEMORY SIZE [&=NO-
718

OFFER THE NEW.
EXPANDED MENORY SIZE
FOR APPLICATION USE
20

COMPUTE A SIZE OF THE
GOMPRESSED MEMORY FOOL
08

OFFER THE DESIRED
EXPANDED MEMORY SIZE
FOR APPLICATION USE
2

WORKLOAD
UNCHANGED
.—“ = @

US 9,183,056 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Lim-et al.; “Disaggregated Memory for Expansion and Sharing in
Blade Severs”; ACM Digital Library; pp. 267-277; Jun. 20-24, 2009.
Likatsas-et al.; “Using Shiftable Content Addressable Memories to
Double Memory Capacity on Embedded Systems”; ACM Digital
Library; 2006.

European Patent Office, International Search Report, EP2010/
065361, Mar. 28, 2011, UK.

Abali et al; “Memory expansion technology (MXT): Software sup-
port and performance”, J. Res. & Dev; vol. 45, No. 2, Mar. 2001.
Tuduce et al; “Adaptive Main Memory Compression”, 2005
USENIX Annual Technical Conference, 237-250, Zurich, Switzer-
land, 2005.

M. Kjelso et al; *“ Performance evaluation of computer architectures
with main memory data compression”, Elsavier, Journal of systems
architectures 45, 1999, 571-590.

U.S. Patent Nov. 10, 2015 Sheet 1 of 5 US 9,183,056 B2
I
FIG. 1 * & * * JTAG/I2C 134
PROCESSOR PROCESSOR PROCESSOR PROCESSOR MEMORY
101 102 103 104 191
l I I |
ATTN SIGNAL _ V¥
SERVICE
y PROCESSOR
< SYSTEM BUS 106 P> 135
PCI BUS 195 J
MEMORY o 195!
CONTROLLER/| po/see
CACHE
108 1o ISA
— BUS
196 NVRAM
SERVICE PROCESSOR 3 192
MAILBOX INTERFACE AND I ‘
ISA BUS ACCESS
PASSTHROUGH PCI/ISA
194 BRIDGE OF FYNEL
160 192 —

LOCAL PCl HOST) PCl /O
MEMORY == BRIDGE P C| BUS 137mue] SLOT fumml ADAPTER
181 130 176 136

PCI
LOCAL PC1' 1BSUS %) PCI 11O
LOCAL BUS —\'2_) SLOT fml ADAPTER
MEMORY s PCI-TO- 170 120
162 PCI HOST bl
1os = BRIDGE BRIDGE
114
116) PCI 11O
PCl BUS‘}—> SLOT [ADAPTER
19 7 121
LOCAL -
MEMORY PCI BUS
LOCAL %) PCI /O
163
— BUS @\"'}—) SLOT e ADAPTER
123 EToN 172 128
PclHOST] ¢~ PCF',CTIO
aE v BRIDGE
— 124 o) PCI /O
PCIBUS Uyl SLOT fuml ADAPTER
/o 121 ~/ 173 129
BUS PCI
PCI BUS
112 LOCAL o) GRAPHICS
m\"\—) SLOT jm ADAPTER
174 148
PClI HOST
DATA PROCESSING aE BRIDE
SYSTEM — 110 HARD DISK
100 PCl Bui}—) SLOT =l ADAPTER
145 175 149
HARD DISK
150

PLATFORM

200

U.S. Patent Nov. 10, 2015 Sheet 2 of 5 US 9,183,056 B2
FIG. 2
PARTITION 203 PARTITION 205 PARTITION 207 PARTITION 209
OPERATING OPERATING OPERATING OPERATING
SYSTEM SYSTEM SYSTEM SYSTEM
202 204 208 SERVICE
—— —— —— —— PROCESSOR
290
PARTITION PARTITION PARTITION PARTITION
FIRMWARE FIRMWARE FIRMWARE FIRMWARE
211 213 217
— — —— —
PLATFORM FIRWARE 210
PROCESSOR PROCESSOR PROCESSOR PROCESSOR /0 ADAPTER 1/0 ADAPTER
232 234 236 238 248 250
1/0 ADAPTER 1/0 ADAPTER
252 254
230
STORAGE NVRAM 1/0 ADAPTER 1/0 ADAPTER
270 298 256 258
MEMORY MEMORY MEMORY MEMORY 1/0 ADAPTER 1/0 ADAPTER
240 242 244 246 260 262
HARDWARE
MANAGEMENT
LOGICAL PARTITIONED CO';J?(?LE

U.S. Patent Nov. 10, 2015 Sheet 3 of 5

FIG. 3

US 9,183,056 B2

302
) UNCOMPRESSED
MEMORY POOL

304

COMPRESSED
MEMORY POOL
306

‘g— AVAILABLE MEMORY 308

ACCESSIBLE
‘——— MEMORY —p

APPLICATION
310

FIG. 4

AMOUNT OF UNCOMPRESSED DATA IN THE
COMPRESSED MEMORY POOL 408

AL

UNCOMPRESSED COMPRESSED
MEMORY POOL MEMORY POOL
404 406

¢ AVAILABLE MEMORY 410

‘§—— ACCESSIBLE MEMORY 414 ———~""

APPLICATION
42

U.S. Patent

Nov. 10, 2015 Sheet 4 of 5 US 9,183,056 B2

FIG. 5

DATA PROCESSING 8YSTEM 5

N

PHYSICAL MEMORY 506

OPERATING T 1 =
SYSTEM EXPANDED MEMORY AVAILABLE TO APPLICATIONS 510
504 |])
APPLICATION 508
FIG. 6
SIZE OF THE COMPRESSED MEMORY POOL 606
DESIRED |1— PHYSICAL MEMORY SIZE 608
SIZE
OF EXPANDED APPLICATION FOR lé— COMPRESSION RATIO OF THE WORKLOAD 610
MEMORY COMPUTING
POOL AND MANAGING [J€&—— PERFORMANCE PARAMETERS 612
618 EXPANDED MEMORY
602 «—— MEMORY REQUIREMENTS 614
€—— OTHER RULES, INPUTS, CONSTRAINTS, OR
FACTORS AFFECTING THE COMPUTATION OF
l EXPANDED MEMORY SIZE 616

EXPANDED MEMORY SIZE VISIBLE TO APPLICATIONS 604

U.S. Patent

FIG. 7

~d
(]

COMPUTE A NEW
EXPANDED MEMORY SIZE
18

Nov. 10, 2015

—NO

A 4

OFFER THE NEW
EXPANDED MEMORY SIZE
FOR APPLICATION USE
720

Sheet 5 of 5

START

RECEIVE A DESIRED SIZE OF
THE EXPANDED MEMORY
102

v

DETERMINE A
COMPRESSION RATIO
OF THE WORKLOAD
704

US 9,183,056 B2

WORKLOAD

v

RECEIVE ANY OTHER
FACTORS TO CONSIDER IN THE
OPERATION OF THE MEMORY
7086

v

COMPUTE A SIZE OF THE
COMPRESSED MEMORY POOL
708

EXPANDED
MEMORY SIZE
BE MADE
AVAILABLE?
710

CHANGED

OFFER THE DESIRED
EXPANDED MEMORY SIZE
FOR APPLICATION USE
712

MONITOR
THE

YES:

NO

A

WORKLOAD?
714

WORKLOAD
UNCHANGED

US 9,183,056 B2

1
EXPANDING MEMORY SIZE

RELATED APPLICATION

The present application is a continuation of patent appli-
cation Ser. No. 12/611,190, filed on Nov. 3, 2009.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to an improved data
processing system, and in particular, to managing memory in
a data processing system. Still more particularly, the present
invention relates to a system, and computer usable program
code for offering and accessing an expanded size of a memory
in a data processing system.

2. Description of the Related Art

Data processing systems include memory devices for stor-
ing, processing, and moving data. A memory device, or
memory, is generally a physical component of a data process-
ing system configured to store data. A memory may also
include logical or virtual components, such as a space on a
hard disk designated to be used as a part of the memory.

A component of the operating system of the data process-
ing system, such as a memory controller, manages the move-
ment of data in and out of the memory, and generally the
operation of the memory. Applications and the operating sys-
tem can use the memory for storing, processing, or moving
data they each need for their respective functions.

Data processing systems can be configured in a variety of
ways. For example, the components in a data processing
system may be configured to operate in a manner such that the
data processing system behaves as a single data processing
unit. The memory in such a configuration operates to support
data manipulation for the single data processing unit.

As another example, data processing systems can be
divided into logical partitions (LPARs). Such data processing
systems are also known as logical partitioned data processing
systems. A logical partition is also known simply as a “parti-
tion”. Each partition operates as a separate data processing
system independent of the other partitions. Generally, a par-
tition management firmware component connects the various
partitions and provides the network connectivity among
them. A Hypervisor is an example of such partition manage-
ment firmware.

One or more memory devices may be present in a logical
partitioned data processing environment. A partition may
access one or more memory devices for manipulating data.
Methods exist to address several portions of several memory
devices in a manner that the several memory devices appear
as a single memory to the applications and the operating
system of a partition.

Data compression is a technique used for manipulating
data such that a size of storage smaller than the actual size of
the data can hold the data. Data compression is used in con-
junction with a memory to accommodate more data than the
actual size of the memory can hold. For example, 1 Giga Byte
(GB) of memory can be made to hold 2 GB of data by suitably
compressing the data.

Typically, data is compressed when stored in the memory
and uncompressed when an application has to retrieve the
data from the memory. Many algorithms for data compres-
sion exist and some are suitable for compressing data in
memory.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a system, and com-
puter usable program product for expanding memory size in

10

15

20

25

35

40

45

50

55

60

65

2

a data processing system. According to the invention, an
embodiment in a data processing system having a memory
receives a desired size of an expanded memory and a first
information about a workload in the data processing system.
The embodiment computes a size of a compressed memory
pool to use with the memory to make the desired size of the
expanded memory available. The embodiment configures a
representation of the memory, the representation of the
memory appearing to be of a size larger than the size of the
memory, the representation of the memory being the
expanded memory, and the size of the representation being
the size of the expanded memory. The embodiment makes
available the expanded memory such that the memory in the
data processing system is usable by addressing the expanded
memory.

Another embodiment additionally receives an input value
corresponding to a performance parameter of the data pro-
cessing system. The configuring the representation includes
determining the size of the representation based on the
desired size of the expanded memory, a compression ratio of
the workload, and the input value. In one embodiment, the
performance parameter is a minimum size of an uncom-
pressed memory pool to avoid thrashing.

In another embodiment, the size of the expanded memory
excludes a size of a memory space. The excluded size of the
memory space may be the size of memory used for storing a
pinned page, a size of memory used for storing a protected
page, a size of memory that is reserved for use by an appli-
cation, or a combination thereof.

Another embodiment determines whether the desired size
of the expanded memory can be made available. In response
to the determining being false, the embodiment makes the
expanded memory available such that the size of the
expanded memory is different from the desired size of the
expanded memory.

Another embodiment determines whether the desired size
of the expanded memory can be made available. In response
to the determining being false, the embodiment makes the
expanded memory available together with information about
a portion of the desired size that cannot be made available.

Another embodiment receives a second information about
a change in the workload, a change in the desired size of the
expanded memory, or a combination thereof. The embodi-
ment re-computes the size of the compressed memory pool
based on the second information and adjusts the size of the
compressed memory pool while the data processing system is
operational. In one embodiment, the adjusting leaves the size
of the expanded memory unchanged.

In one embodiment, the size of the expanded memory is
equal to the sum of (i) a product of a compression ratio of the
workload and the size of the compressed memory pool and
(ii) a difference of the size of the memory and the size of the
compressed memory pool.

In another embodiment, addressing the expanded memory
is accomplished in the manner of addressing the memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself;
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

US 9,183,056 B2

3

FIG. 1 depicts a block diagram of a data processing system
in which the illustrative embodiments may be implemented is
depicted;

FIG. 2 depicts a block diagram of an example logical
partitioned platform in which the illustrative embodiments
may be implemented;

FIG. 3 depicts a block diagram of a memory configuration
using which the illustrative embodiments can be imple-
mented;

FIG. 4 depicts a block diagram of a memory configuration
in accordance with an illustrative embodiment;

FIG. 5 depicts a block diagram of making expanded
memory available in accordance with an illustrative embodi-
ment;

FIG. 6 depicts a block diagram of an application for com-
puting and managing expanded memory in accordance with
an illustrative embodiment; and

FIG. 7 depicts a flow chart of a process of making available
an expanded memory size in accordance with an illustrative
embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the operation of data processing systems, often a need
arises to fit more data into available memory than the avail-
able memory can hold. Presently, data compression tech-
niques are utilized to compress all or part of the data meant to
be stored in the memory such that the size of the compressed
data is less than or equal to the size of the available memory.
Available memory is the memory usable for storing data in a
given data processing system.

The invention recognizes that the size of the memory in a
data processing system is often a bottleneck in increasing the
throughput of a data processing system. While the capabili-
ties of the processor in the data processing system may allow
faster, larger, or more computations than the data processing
system may be performing at a given time, the available
memory frequently limits the support for those increased
computations.

The invention further recognizes that even the data com-
pression techniques used in present memory configurations
suffer from certain drawbacks. For example, presently, a
memory utilizing data compression may include a com-
pressed memory pool, an uncompressed memory pool, and a
paging space. A compressed memory pool is an area of the
memory where compressed data is stored. An uncompressed
memory pool is another area of the memory where uncom-
pressed data is stored. A paging space is a virtual memory,
often a designated space of a hard disk, used as a spillage area
for data that cannot be accommodated in the memory. Gen-
erally, the compressed memory pool and the uncompressed
memory pool account for the available size of the physical
memory in a data processing system.

The invention recognizes that in present memory configu-
rations, an application may only access the uncompressed
memory pool when reading or writing data in the memory. As
an example, a data processing system may include available
memory of size 2 GB. 0.5 GB of that available memory may
be designated, typically by a user, to be the compressed
memory pool. Remainder 1.5 GB of the available memory
becomes the uncompressed memory pool. Most of the 1.5 GB
of'the uncompressed memory pool is what is accessible to the
applications, save the portion that the operating system
reserves for the operating system’s use. In some instances,
applications may have the entire memory size, 2 GB in the
above example, accessible to them. In such instances, the

10

15

20

25

30

35

40

45

50

55

60

65

4

operating system simply decompresses the page from the
compressed memory pool if an application happens to
address the page in the compressed memory pool.

Thus, the invention recognizes that the memory accessible
by the applications is either only a part of the available
memory or at most the whole available memory, but not more
than the size of the available memory. Additionally, presently
a user has to specify a size of the compressed memory pool.
The invention recognizes that specifying the size of the com-
pressed memory pool is a non-trivially complex task for a
user, particularly in advance of knowing the compressibility
characteristics of data of future workloads that will utilize that
compressed memory pool. The invention further recognizes
that this method also requires constant monitoring of the
partitions in case the specified settings cause problems as the
workload evolves or changes.

Furthermore, presently, once the size of the compressed
memory pool is specified, that size remains static for the
remainder of the operation of the data processing system. The
invention recognizes that a static size of compressed memory
pool may be unsuitable for processing certain data that may
not be compressible into the static size of the compressed
memory pool. For example, at some point in the operation of
the data processing system, the data of a given workload may
be compressible so as to require a smaller than the static size
of the compressed memory pool. In such a case, part of the
available memory in the compressed memory pool is wasted,
adversely affecting the performance of the data processing
system.

As another example, at some point in the operation of the
data processing system, the data of a given workload may be
compressible so as to require a larger than the static size of the
compressed memory pool. In such a case, the static size of the
compressed memory pool may limit the amount of data that
can be compressed, decreasing the performance of the data
processing system.

The invention further recognizes that the compressed
memory pool is presently used only to speed up the paging
process. For example, when an application needs a page of
data that is not in the uncompressed memory pool but the
compressed memory pool, a page fault is generated. In
response to the page fault, a component of the operating
system decompresses the page from the compressed memory
pool and moves the uncompressed page into the uncom-
pressed memory pool.

To make space for the uncompressed page, the operating
system in this example has to move some other pages out of
the uncompressed memory pool, compress them, and move
them into the compressed memory pool. Because the page
fault results in data movement within the memory—between
the compressed and the uncompressed memory pools—the
paging is faster as compared to the paging speed if data were
moved between the virtual paging space and the memory.

The invention recognizes that other than for being available
to the operating system for speeding up the paging, the com-
pressed memory pool is unavailable to the applications. The
present data compression in memory does not expand the size
of'the memory accessible to the application beyond the size of
the available memory.

The present techniques make at most the size of the avail-
able memory accessible to the applications. In fact, some
instances of the present data compression in memory reduce
the size of the memory accessible to the application to less
than the size of the available memory. Even if, hypothetically,
any extra memory space in a compressed form could be
presently made available to an application, given the present

US 9,183,056 B2

5

techniques for data compression in memory, the application
would have to be modified to make use of the compressed
form of such extra memory.

The illustrative embodiments used to describe the inven-
tion address and solve these and other problems related to
data compression in memory. The illustrative embodiments
provide a computer usable program product, and data pro-
cessing system for expanding the size of the memory such
that a larger than actual size of the available memory can
become accessible to applications. Using the illustrative
embodiments, an application can become aware of the larger
size of the memory without requiring any modification to the
application code.

Using the illustrative embodiments, an operating system
can offer a size of memory accessible to the applications that
appears larger than the actual size of memory. Using the
illustrative embodiments, an application can access memory
that appears to be larger than the actual size of the memory.
For example, by using an illustrative embodiment, with a
memory of an actual size of 2 GB, and given a certain com-
pression ratio of a workload, an operating system may be able
to offer and an application may be able to access 4 GB of
memory. The total increased accessible memory is referred to
as the expanded memory.

Furthermore, using the illustrative embodiments, only a
desired size of the expanded memory has to be specified—a
rather uncomplicated and simple task—as compared to pre-
determining a suitable size of compressed memory pool. A
system implementing the illustrative embodiments can then
attempt to achieve the desired size of the expanded memory or
as close there to as possible under any given workload.

Furthermore, a system implementing the illustrative
embodiments can automatically adjust the sizes of the com-
pressed and uncompressed pools, to achieve the desired
expanded memory size. The automatic adjustment can be
based on a variety of factors, such as for example, the com-
pression ratio of a given workload, the demands of the oper-
ating system kernel, and performance thresholds.

The examples in this disclosure are used only for the clarity
of the description and are not limiting on the illustrative
embodiments. Additional operations, actions, tasks, activi-
ties, and manipulations will be conceivable from this disclo-
sure and the same are contemplated within the scope of the
illustrative embodiments.

The illustrative embodiments are described using specific
code, data structures, designs, layouts, schematics, and tools
only as examples and are not limiting on the illustrative
embodiments. The illustrative embodiments may be imple-
mented with respect to any type of memory, data storage
device, or network.

Furthermore, the illustrative embodiments are described in
some instances using particular software tools and data pro-
cessing environments only as an example for the clarity of the
description. The illustrative embodiments may be used in
conjunction with other comparable or similarly purposed sys-
tems, applications, or architectures.

For example, some illustrative embodiments that are
described in conjunction with virtualized logical partitioned
environments can be used in conjunction with any data pro-
cessing system where the illustrative embodiments can be
implemented in the manner described within the scope of the
invention. For example, an operation described with respect
to a single memory device in this disclosure can be similarly
implemented with respect to more than one memory devices
in certain data processing systems without departing the
scope of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

Any advantages listed herein are only examples and are not
intended to be limiting on the illustrative embodiments. Addi-
tional or different advantages may be realized by specific
illustrative embodiments. Furthermore, a particular illustra-
tive embodiment may have some, all, or none of the advan-
tages listed above.

With reference to the figures and in particular with refer-
ence to FIGS. 1 and 2, these figures are example diagrams of
data processing environments in which illustrative embodi-
ments may be implemented. FIGS. 1 and 2 are only examples
and are not intended to assert or imply any limitation with
regard to the environments in which different embodiments
may be implemented. A particular implementation may make
many modifications to the depicted environments based on
the following description.

With reference to FIG. 1, this figure depicts a block dia-
gram of a data processing system in which the illustrative
embodiments may be implemented is depicted. Data process-
ing system 100 may be a symmetric multiprocessor (SMP)
system including a plurality of processors 101, 102, 103, and
104, which connect to system bus 106. For example, data
processing system 100 may be an IBM Power System®
implemented as a server within a network. (Power Systems is
a product and a trademark of International Business
Machines Corporation in the United States and other coun-
tries). Alternatively, a single processor system may be
employed. Also connected to system bus 106 is memory
controller/cache 108, which provides an interface to a plural-
ity of local memories 160-163. 1/0 bus bridge 110 connects to
system bus 106 and provides an interface to I/O bus 112.
Memory controller/cache 108 and I/O bus bridge 110 may be
integrated as depicted.

Data processing system 100 is a logical partitioned data
processing system. Thus, data processing system 100 may
have multiple heterogeneous operating systems (or multiple
instances of a single operating system) running simulta-
neously. Each of these multiple operating systems may have
any number of software programs executing within it. Data
processing system 100 is logically partitioned such that dif-
ferent PCI 1/0 adapters 120-121, 128-129, and 136, graphics
adapter 148, and hard disk adapter 149 may be assigned to
different logical partitions. In this case, graphics adapter 148
connects for a display device (not shown), while hard disk
adapter 149 connects to and controls hard disk 150.

Thus, for example, suppose data processing system 100 is
divided into three logical partitions, P1, P2, and P3. Each of
PCI /O adapters 120-121, 128-129, 136, graphics adapter
148, hard disk adapter 149, each of host processors 101-104,
and memory from local memories 160-163 is assigned to
each of the three partitions. In these examples, memories
160-163 may take the form of dual in-line memory modules
(DIMMs). DIMMs are not normally assigned on a per DIMM
basis to partitions. Instead, a partition will get a portion of the
overall memory seen by the platform. For example, processor
101, some portion of memory from local memories 160-163,
and I/O adapters 120, 128, and 129 may be assigned to logical
partition P1; processors 102-103, some portion of memory
from local memories 160-163, and PCI I/O adapters 121 and
136 may be assigned to partition P2; and processor 104, some
portion of memory from local memories 160-163, graphics
adapter 148 and hard disk adapter 149 may be assigned to
logical partition P3.

Each operating system executing within data processing
system 100 is assigned to a different logical partition. Thus,
each operating system executing within data processing sys-
tem 100 may access only those I/O units that are within its
logical partition. Thus, for example, one instance of the

US 9,183,056 B2

7

Advanced Interactive Executive (AIM operating system may
be executing within partition P1, a second instance (image) of
the AIX operating system may be executing within partition
P2, and a Linux® or IBM-i® operating system may be oper-
ating within logical partition P3. (AIX and IBM-i are trade-
marks of International business Machines Corporation in the
United States and other countries. Linux is a trademark of
Linus Torvalds in the United States and other countries).

Peripheral component interconnect (PCI) host bridge 114
connected to I/O bus 112 provides an interface to PCI local
bus 115. A number of PCI input/output adapters 120-121
connect to PCI local bus 115 through PCI-to-PCI bridge 116,
PCI bus 118, PCI bus 119, I/O slot 170, and I/O slot 171.
PCI-t0-PCI bridge 116 provides an interface to PCI bus 118
and PCIbus 119. PCI1/O adapters 120 and 121 are placed into
1/0 slots 170 and 171, respectively. Typical PCI bus imple-
mentations support between four and eight /O adapters (i.e.
expansion slots for add-in connectors). Each PCI 1/O adapter
120-121 provides an interface between data processing sys-
tem 100 and input/output devices such as, for example, other
network computers, which are clients to data processing sys-
tem 100.

An additional PCI host bridge 122 provides an interface for
an additional PCI local bus 123. PCI local bus 123 connects to
a plurality of PCI I/O adapters 128-129. PCI I/O adapters
128-129 connect to PCI local bus 123 through PCl-to-PCI
bridge 124, PCI bus 126, PCI bus 127, 1/O slot 172, and I/O
slot 173. PCI-to-PCI bridge 124 provides an interface to PCI
bus 126 and PCI bus 127. PCI I/O adapters 128 and 129 are
placedinto I/O slots 172 and 173, respectively. In this manner,
additional I/O devices, such as, for example, modems or
network adapters may be supported through each of PCI I/O
adapters 128-129. Consequently, data processing system 100
allows connections to multiple network computers.

A memory mapped graphics adapter 148 is inserted into
1/0slot 174 and connects to I/O bus 112 through PCI bus 144,
PCI-t0-PCI bridge 142, PCI local bus 141, and PCI host
bridge 140. Hard disk adapter 149 may be placed into [/O slot
175, which connects to PCI bus 145. In turn, this bus connects
to PCI-to-PCI bridge 142, which connects to PCI host bridge
140 by PCI local bus 141.

A PCI host bridge 130 provides an interface for a PCI local
bus 131 to connect to /O bus 112. PCI 1/O adapter 136
connects to /O slot 176, which connects to PCI-to-PCI bridge
132 by PCI bus 133. PCI-to-PCI bridge 132 connects to PCI
local bus 131. This PCI bus also connects PCI host bridge 130
to the service processor mailbox interface and ISA bus access
pass-through logic 194 and PCI-to-PCI bridge 132.

Service processor mailbox interface and ISA bus access
pass-through logic 194 forwards PCI accesses destined to the
PCI/ISA bridge 193. NVRAM storage 192 connects to the
ISA bus 196. Service processor 135 connects to service pro-
cessor mailbox interface and ISA bus access pass-through
logic 194 through its local PCI bus 195. Service processor 135
also connects to processors 101-104 via a plurality of JTAG/
12C busses 134. JTAG/I2C busses 134 are a combination of
JTAG/scan busses (see IEEE 1149.1) and Phillips I2C busses.

However, alternatively, JTAG/I2C busses 134 may be
replaced by only Phillips 12C busses or only JTAG/scan bus-
ses. All SP-ATTN signals of the host processors 101, 102,
103, and 104 connect together to an interrupt input signal of
service processor 135. Service processor 135 has its own
local memory 191 and has access to the hardware OP-panel
190.

When data processing system 100 is initially powered up,
service processor 135 uses the JTAG/12C busses 134 to inter-
rogate the system (host) processors 101-104, memory con-

30

40

45

8

troller/cache 108, and 1/O bridge 110. At the completion of
this step, service processor 135 has an inventory and topology
understanding of data processing system 100. Service pro-
cessor 135 also executes Built-In-Self-Tests (BISTs), Basic
Assurance Tests (BATs), and memory tests on all elements
found by interrogating the host processors 101-104, memory
controller/cache 108, and I/O bridge 110. Any error informa-
tion for failures detected during the BISTs, BATs, and
memory tests are gathered and reported by service processor
135.

If a meaningful/valid configuration of system resources is
still possible after taking out the elements found to be faulty
during the BISTs, BATs, and memory tests, then data pro-
cessing system 100 is allowed to proceed to load executable
code into local (host) memories 160-163. Service processor
135 then releases host processors 101-104 for execution of
the code loaded into local memory 160-163. While host pro-
cessors 101-104 are executing code from respective operating
systems within data processing system 100, service processor
135 enters a mode of monitoring and reporting errors. The
type of items monitored by service processor 135 include, for
example, the cooling fan speed and operation, thermal sen-
sors, power supply regulators, and recoverable and non-re-
coverable errors reported by processors 101-104, local
memories 160-163, and I/O bridge 110.

Service processor 135 saves and reports error information
related to all the monitored items in data processing system
100. Service processor 135 also takes action based on the type
of errors and defined thresholds. For example, service pro-
cessor 135 may take note of excessive recoverable errors on a
processor’s cache memory and decide that this is predictive of
a hard failure. Based on this determination, service processor
135 may mark that resource for deconfiguration during the
current running session and future Initial Program [oads
(IPLs). IPLs are also sometimes referred to as a “boot” or
“bootstrap”.

Data processing system 100 may be implemented using
various commercially available computer systems. For
example, data processing system 100 may be implemented
using IBM Power Systems available from International Busi-
ness Machines Corporation. Such a system may support logi-
cal partitioning using an AIX operating system, which is also
available from International Business Machines Corporation.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 1 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply archi-
tectural limitations with respect to the illustrative embodi-
ments.

With reference to FIG. 2, this figure depicts a block dia-
gram of an example logical partitioned platform in which the
illustrative embodiments may be implemented. The hardware
in logical partitioned platform 200 may be implemented as,
for example, data processing system 100 in FIG. 1.

Logical partitioned platform 200 includes partitioned
hardware 230, operating systems 202, 204, 206, 208, and
platform firmware 210. A platform firmware, such as plat-
form firmware 210, is also known as partition management
firmware. Operating systems 202, 204, 206, and 208 may be
multiple copies of a single operating system or multiple het-
erogeneous operating systems simultaneously run on logical
partitioned platform 200. These operating systems may be
implemented using IBM-i, which are designed to interface
with a partition management firmware, such as Hypervisor.
IBM-i is used only as an example in these illustrative embodi-
ments. Of course, other types of operating systems, such as

US 9,183,056 B2

9

AIX and Linux, may be used depending on the particular
implementation. Operating systems 202, 204, 206, and 208
are located in partitions 203, 205, 207, and 209.

Hypervisor software is an example of software that may be
used to implement partition management firmware 210 and is
available from International Business Machines Corporation.
Firmware is “software” stored in a memory chip that holds its
content without electrical power, such as, for example, read-
only memory (ROM), programmable ROM (PROM), eras-
able programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), and nonvolatile random
access memory (nonvolatile RAM or NVRAM).

Additionally, these partitions also include partition firm-
ware 211, 213, 215, and 217. Partition firmware 211, 213,
215, and 217 may be implemented using initial boot strap
code, IEEE-1275 Standard Open Firmware, and runtime
abstraction software (RTAS), which is available from Inter-
national Business Machines Corporation. When partitions
203, 205, 207, and 209 are instantiated, a copy of boot strap
code is loaded onto partitions 203, 205, 207, and 209 by
platform firmware 210. Thereafter, control is transferred to
the boot strap code with the boot strap code then loading the
open firmware and RTAS. The processors associated or
assigned to the partitions are then dispatched to the partition’s
memory to execute the partition firmware.

Partitioned hardware 230 includes a plurality of processors
232-238, a plurality of system memory units 240-246, a plu-
rality of input/output (/O) adapters 248-262, and a storage
unit 270. Each of the processors 232-238, memory units
240-246, NVRAM storage 298, and /O adapters 248-262
may be assigned to one of multiple partitions within logical
partitioned platform 200, each of which corresponds to one of
operating systems 202, 204, 206, and 208.

Partition management firmware 210 performs a number of
functions and services for partitions 203, 205,207, and 209 to
create and enforce the partitioning of logical partitioned plat-
form 200. Partition management firmware 210 is a firmware
implemented virtual machine identical to the underlying
hardware. Thus, partition management firmware 210 allows
the simultaneous execution of independent OS images 202,
204, 206, and 208 by virtualizing all the hardware resources
of logical partitioned platform 200.

Service processor 290 may be used to provide various
services, such as processing of platform errors in the parti-
tions. These services also may act as a service agent to report
errors back to a vendor, such as International Business
Machines Corporation. Operations of the different partitions
may be controlled through a hardware management console,
such as hardware management console 280. Hardware man-
agement console 280 is a separate data processing system
from which a system administrator may perform various
functions including reallocation of resources to different par-
titions.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of certain hardware depicted in FIGS.
1-2. An implementation of the illustrative embodiments may
also use alternative architecture for managing partitions with-
out departing from the scope of the invention.

With reference to FIG. 3, this figure depicts a block dia-
gram of a memory configuration using which the illustrative
embodiments can be implemented. Memory 302 is depicted
as a single block only as a logical view of memory that
includes one or more of memory 240, 242, 244, and 246 in

20

25

30

35

40

45

50

55

10

FIG. 2. Memory 302 includes uncompressed memory pool
304 and compressed memory pool 306 which together form
available memory 308.

Application 310 may be any software application, certain
components of an operating system, a hardware or firmware
component of the data processing system that includes
memory 302, or a combination thereof. As in present configu-
rations, application 310 may access only uncompressed
memory pool 304, which forms accessible memory 312. In
some instances, application 310 may access compressed
memory pool 306 as well. In such instances, accessible
memory 312 may span available memory 308. In any instance
configured according to the present technology, accessible
memory 312 cannot exceed the size of memory 302 that is
available memory 308.

Accessible memory 312 is shown as being all of uncom-
pressed memory pool 304 only for the sake of clarity of the
description. In realistic configurations, a portion of uncom-
pressed memory pool 304 may be reserved for storing and
manipulating pinned pages or protected pages, and may not
be included in accessible memory 312 for certain applica-
tions. A pinned page is a page of data that is unmovable from
its location in the memory. A protected page is a page of data
in memory that may be accessed only by authorized applica-
tion, such as the operating system kernel.

As depicted in the presently used memory configuration of
FIG. 3, disadvantageously, accessible memory 312 includes
only a portion of available memory 308 or at most all of
available memory 308. Furthermore, disadvantageously, the
size of compressed memory pool 306 is specified in the man-
ner described earlier and remains fixed for the duration of the
operation of the data processing system that includes memory
302.

With reference to FIG. 4, this figure depicts a block dia-
gram of a memory configuration in accordance with an illus-
trative embodiment. Memory 402 may be implemented using
memory 302 in FIG. 3.

Memory 402 includes uncompressed memory pool 404
and compressed memory pool 406. Block 408 represents the
amount of uncompressed data that is stored compressed in
compressed memory pool 406.

Unless the compression ratio of compressed data in com-
pressed memory pool 406 is 1:1, to wit, no compression,
block 408 will generally be larger than compressed memory
pool 406. For example, assume that the compression ratio of
the data in compressed memory pool 406 were 3:1—in other
words, the data stored in compressed memory pool 406 was
compressed to one third the size of the uncompressed data.
Further assume, as an example, that the size of memory 402
was 2 GB and the size of compressed memory pool 406 was
1 GB. For this example, block 408 would represent memory
(1 GB*3), or 3 GB in size.

Available memory 410 according to the illustrative
embodiment is the total of the size of uncompressed memory
pool 404 and block 408. Available memory 410 in the above
example would therefore be (2 GB-1 GB) of uncompressed
memory pool 404+3 GB of block 408=4 GB of available
memory 410 using only 2 GB of memory 402. Available
memory 410 is the expanded memory according to the illus-
trative embodiment.

Generally, the size of the expanded memory according to
the illustrative embodiment may be computed as follows:

Expanded memory size=(compression ratio*size of
the compressed memory pool)+(actual size of the
memory-size of the compressed memory pool).

US 9,183,056 B2

11

Expanded memory according to the illustrative embodi-
ment may be addressed, such as by application 412, in any
manner suitable for a given implementation. For example,
virtual addresses spanning available memory 410 may be
used in application 412. The virtual addresses may be trans-
lated to physical addresses on memory 402 and suitable
operations, such as compression or decompression of data,
may be performed for physical addresses lying within com-
pressed memory pool 406. Other schemes and mechanisms
for addressing available memory 410 will be apparent to
those skilled in the art from this disclosure.

By being able to address available memory 410, available
memory 410 becomes accessible memory 414 for application
412. Accessible memory 414 according to the illustrative
embodiment may be advantageously larger than accessible
memory 312 in FIG. 3 according to the present state of tech-
nology.

With reference to FIG. 5, this figure depicts a block dia-
gram of making expanded memory available in accordance
with an illustrative embodiment. Data processing system 502
may be implemented using, for example, any of partitions
203,205,207, 0r 209 in FIG. 2. Operating system 504 may be
implemented using, for example, any of operating system
202,204,206, or 208 in F1G. 2. Physical memory 506 may be
implemented using any of memory 240, 242, 244, or 246 in
FIG. 2.

A component of operating system 504 may manage physi-
cal memory 506. Particularly, the management of physical
memory 506 may include making physical memory available
to applications, such as application 508, for use.

In accordance with an illustrative embodiment, operating
system 504 may make expanded memory 510 available to
application 508. Expanded memory 510 corresponds to avail-
able memory 410 depicted in FIG. 4 and similarly includes a
compressed memory pool, an uncompressed memory pool,
and additional memory space equivalent of ((compression
ratio—1)*compressed memory pool).

Application 508 may address expanded memory 510 in any
addressing suitable for a particular implementation. A com-
ponent of operating system 504 suitably translates such
addressing to perform the desired operations with respect to
physical memory 506.

With reference to FIG. 6, this figure depicts a block dia-
gram of an application for computing and managing
expanded memory in accordance with an illustrative embodi-
ment. Application 602 may be implemented as a standalone
application executing on a data processing system, such as
any of partitions 203, 205, 207, or 209 in FIG. 2. Application
602 may also be implemented as a component of an operating
system, such as a component of operating system 504 in FIG.
5. Furthermore, application 602 may be implemented in firm-
ware, such as in amemory controller associated with physical
memory 506 in FIG. 5.

Application 602 receives several inputs and outputs
expanded memory size 604 available to applications execut-
ing on a data processing system. Application 602 also outputs
size of compressed memory pool 606 that should be set in
memory for the workload during a given period.

Application 602 can be configured to receive any number
and types of inputs without limitations as may be suitable for
a give implementation. For example, application 602 may
receive physical memory size 608 as input.

Application 602 may receive compression ratio of work-
load 610. In one embodiment, instead of receiving compres-
sion ratio of workload 610, application 602 may receive other
information from which application 602 may compute com-
pression ratio of workload 610.

10

15

20

25

30

35

40

45

50

55

60

65

12

Application 602 may also receive a set of performance
parameters 612. A performance parameter is a desired value
of'a parameter that measures a certain performance aspect of
the data processing system or a component thereof. A set of
performance parameters is one or more performance param-
eters. Some examples of performance parameters 612 may be
upper or lower limits on CPU utilization, page faults, memory
utilization, disk I/O, wait time for processing a thread or task,
and response time of certain applications. A performance
parameter may also be a minimum size of the uncompressed
memory pool such that thrashing does not occur. Thrashing is
the phenomenon when the data processing system becomes
so busy in paging pages in and out of memory to accomplish
a task in a process that the data processing system fails to
accomplish the task in the process within a predetermined
time. Of course, these examples of performance parameters
are listed only for the clarity of the illustrative embodiments
and are not intended to be limiting on the invention. A par-
ticular implementation may measure performance using any
parameter of a given data processing system, and the same are
contemplated within the scope of the invention.

Application 602 may receive memory requirements 614 as
an input. Memory requirements 614 may inform application
602 to exclude certain memory space from application 602’s
computations. For example, memory requirements 614 may
include size and location of pinned pages and protected
pages, or any combination thereof. Memory requirements
614 may also include memory space to be reserved for oper-
ating system, hardware components, such as a graphics card,
or applications.

Alternatively, memory requirements 614 may cause appli-
cation 602 to include only certain memory spaces in applica-
tion 602°s computations. For example, memory requirements
614 may cause application 602 to expand only the space
allocated for user or application data in a given memory.

Application 602 may receive any number or type of inputs
616 without limitation. Some examples of other inputs usable
in an implementation of application 602 may be rules, poli-
cies, or constraints applicable to memory operations. Any
factor affecting the computation of expanded memory in the
manner of an illustrative embodiment is contemplated as an
input to application 602 within the scope of the invention.

Application 602 receives as input 618 a desired size of the
expanded memory. In one embodiment, an application or a
system parameter may specify a desired size of the expanded
memory and such specification may form input 618. In
another embodiment, a computation may result in a desired
size of the expanded memory, the result forming input 618.
For example, an application in a given data processing system
may compute or forecast memory requirements during a
given present or future period. Such computation may pro-
duce a desired size of expanded memory to meet the fore-
casted memory requirement. The result of such computation
may form input 618. A desired size of the expanded memory
may be generated, computed, or received in any manner suit-
able for a given implementation to provide as input 618 to
application 602.

Each value that is inputted, computed, specified, derived,
or inferred at application 602 is a factor affecting the opera-
tion of the memory. The operation of the memory includes
making expanded memory available.

Based on the various inputs received at application 602,
application 602 determines whether the desired expanded
memory size can be made available while satistying the
desired constraints and conditions of the various inputs.

US 9,183,056 B2

13

Application 602 also determines size of the compressed
memory pool 606 that may enable that desired expanded
memory size.

Note that size of the compressed memory pool 606 may
dynamically vary during the operation of the data processing
system where application 602 may be executing. Following
are some examples of dynamic variation of size of the com-
pressed memory pool 606. Size of the compressed memory
pool 606 may vary for the same desired expanded memory
size depending on other inputs to application 602 at a given
time during the operation of the data processing system. Size
of the compressed memory pool 606 may vary as different
desired expanded memory sizes are computed, received, or
specified during the operation of the data processing system.

In certain circumstances, application 602 may not be able
to make the desired size of the expanded memory available
without failing to meet a performance parameter or another
constraint. In such circumstances, an embodiment of appli-
cation 602 may compute and make available an expanded
memory size that is less than but as close to the desired
expanded memory size as possible.

In one embodiment, a size of deficit may also be produced
from application 602. The size of deficit is the portion of the
desired expanded memory size that could not be made avail-
able. In an embodiment, application 602 may not set the size
of the desired expanded memory to be a size smaller by the
size of the deficit, but only inform about the size of the deficit.
In another embodiment, application 602 may adjust the size
of the desired expanded memory by the size of deficits at
different times during the operation of the data processing
system.

Of course, under certain circumstances, another embodi-
ment of application 602 may be able to make available more
than the desired size of the expanded memory. Generally,
application 602 may be able to adjust the size of expanded
memory made available to applications dynamically, to wit,
while the data processing system is in operation, depending
on the conditions existing or forecasted in the data processing
system. At any given time, expanded memory size available
to application 604 may be same as, less than, or greater than
desired size of expanded memory 618.

With reference to FIG. 7, this figure depicts a flow chart of
a process of making available an expanded memory size in
accordance with an illustrative embodiment. Process 700
may be implemented in application 602 in FIG. 6.

Process 700 begins by receiving a desired size of the
expanded memory (step 702). Process 700 determines a com-
pression ratio of the workload during the period the expanded
memory size is desired (step 704). In one embodiment, the
compression ratio may be received as an input to process 700.
In another embodiment, process 700 may compute the com-
pression ratio in step 704 based on other information.

Process 700 may receive any other factors to consider in the
operation of the memory, the operation of the memory includ-
ing making expanded memory available (step 706). An
example of such a factor may be the actual current usage of
memory in a partition. Process 700 computes a size of the
compressed memory pool based on the desired expanded
memory size and other factors (step 708).

Process 700 determines whether the desired expanded
memory size can be made available (step 710). If the desired
expanded memory size can be made available (“Yes” path of
step 710), process 700 offers the desired expanded memory
size for application use (step 712).

10

15

20

25

30

35

40

45

50

55

60

65

14

Process 700 determines whether to monitor the workload
(step 714). Workload in a data processing system can change
as the data processing system processes different tasks over a
period.

In one embodiment, process 700 may be configured to
monitor the changing workload. In another embodiment, pro-
cess 700 may receive information corresponding to changes
in the workload, for example, a changed compression ratio of
the changed workload. In another embodiment, process 700
may detect changes in the workload in any other direct or
indirect ways within the scope of the invention. Step 714 may
be modified accordingly to either directly monitor the work-
load, monitor indirect indicators of a changed workload, or
receive information corresponding to a changed workload
within the scope of the invention.

If process 700 determines that the workload in the data
processing system has changed (“Workload changed” path of
step 714), process 700 returns to step 704. If process 700
determines that the workload is unchanged (“Workload
unchanged” path of step 714), process 700 proceeds to step
716. In one embodiment, process 700 may determine that a
workload is unchanged if the changes in the workload or a
corresponding indicator are within a predefined threshold.

In an embodiment, step 714 may also include, as an
example, monitoring for a change in the desired size of the
expanded memory. In such an embodiment, upon detecting a
change in the desired size of the expanded memory, “work-
load changed” path of step 714 may return to step 702 instead
of step 704. The change can be detected in any manner suit-
able for an implementation. For example, one embodiment
may poll for detecting a change, whereas another embodi-
ment may receive a notification when a change event occurs.

The change in workload and the change in the desired size
of the expanded memory are described only as examples of
factors that process 700 may monitor and are not intended to
be limiting on the invention. An implementation of process
700 may monitor additional or different parameters or con-
ditions in a given data processing system within the scope of
the invention.

Process 700 determines whether to end process 700 (step
716). If process 700 should end (“Yes” path of step 716),
process 700 ends thereafter. If process 700 should not end
(“No” path of step 716), process 700 returns to step 714.

Returning to step 710, if process 700 determines that the
desired expanded memory size cannot be made available
(“No” path of step 710), process 700 computes a new
expanded memory size (step 718). Process 700 offers the new
expanded memory size for application use (step 720). Process
700 proceeds to step 714 thereafter. In one embodiment,
process 700 may not offer a new expanded memory size but
offer the unachieved desired expanded memory size and a
size of deficit from the desired expanded memory size within
the scope of the invention.

The components in the block diagrams and the steps in the
flowcharts described above are described only as examples.
The components and the steps have been selected for the
clarity of the description and are not limiting on the illustra-
tive embodiments of the invention. For example, a particular
implementation may combine, omit, further subdivide,
modify, augment, reduce, or implement alternatively, any of
the components or steps without departing from the scope of
the illustrative embodiments. Furthermore, the steps of the
processes described above may be performed in a different
order within the scope of the invention.

Thus, an apparatus, and computer program product are
provided in the illustrative embodiments for expanding
memory size in a data processing system. Using the embodi-

US 9,183,056 B2

15

ments of the invention, the data processing environment can
make available a larger size memory as compared to the size
of'the physical memory in the data processing system. Using
the embodiments of the invention, an application can access
and address expanded memory of a size larger than the size of
the physical memory in the data processing system. Having
access to the size of the expanded memory may improve an
application’s performance as compared to when the applica-
tion only has access to the size of the physical memory.

Furthermore, the invention allows applications to transpar-
ently access the expanded memory. In other words, an
embodiment of the invention allows an application to access
the expanded memory without requiring any code modifica-
tion in the application to address the expanded memory in a
manner different from the manner in which the application
presently addresses memory.

Additionally, an application can access the expanded
memory according to an embodiment of the invention with-
out any performing additional or different steps. In other
words, transparently addressing the expanded memory of the
invention includes the application’s ability to address the
expanded memory in the manner consistent with the manner
of addressing presently available memory.

The invention receives an input of the desired size of the
expanded memory—a relatively easy parameter to specify as
compared to specifying a suitable static size of the com-
pressed memory pool. The invention simplifies certain tasks
of memory management. For example, an embodiment of the
invention may automate the computation and dynamic adjust-
ment of the compressed memory pool.

The invention can take the form of an entirely hardware
embodiment, entirely software embodiment, or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware or program code, which includes but is not limited to
firmware, resident software, and microcode.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable device providing program code for use by orin
connection with a computer or any instruction execution sys-
tem. For the purposes of this description, a computer-usable
or computer-readable device can be any hardware apparatus
that can store the program for use by or in connection with the
instruction execution system, apparatus, or device.

The device can be an electronic, magnetic, optical, electro-
magnetic, or semiconductor system (or apparatus or device).
Examples of a computer-readable device include a semicon-
ductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-
only memory (ROM), a rigid magnetic disk, and an optical
disk. Current examples of optical disks include compact disk-
read only memory (CD-ROM), compact disk-read/write
(CD-R/W) and DVD.

Further, a computer storage device may store a computer-
readable program code such that when the computer-readable
program code is executed on a computer, the execution of this
computer-readable program code causes the computer to
transmit another computer-readable program code. The terms
“computer usable storage device,” “computer readable stor-
age device,” and “storage device” do not encompass a signal
propagation medium, any description in this disclosure to the
contrary notwithstanding.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk

20

25

30

40

45

50

16

storage media, and cache memories, which provide tempo-
rary storage of at least some program code in order to reduce
the number of times code must be retrieved from bulk storage
media during execution.

A data processing system may act as a server data process-
ing system or a client data processing system. Server and
client data processing systems may include data storage
media that are computer usable, such as being computer
readable. A data storage medium associated with a server data
processing system may contain computer usable code. A
client data processing system may download that computer
usable code, such as for storing on a data storage medium
associated with the client data processing system, or for using
in the client data processing system. The server data process-
ing system may similarly upload computer usable code from
the client data processing system. The computer usable code
resulting from a computer usable program product embodi-
ment of the illustrative embodiments may be uploaded or
downloaded using server and client data processing systems
in this manner.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to explain the principles of
the invention, the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited
to the particular use contemplated.

What is claimed is:
1. A computer usable program product comprising a com-
puter usable storage device including computer usable code
for expanding memory size, the computer usable code com-
prising:
computer usable code for receiving in a data processing
system having a memory, a value of a desired size, the
desired size being an amount of an expanded memory;

computer usable code for receiving a first information
about a workload in the data processing system;

computer usable code for computing a size of a com-
pressed memory pool, the compressed memory pool
being usable with the memory to make the desired size
of the expanded memory available for use with the work-
load in the data processing system;

computer usable code for configuring a representation of

the memory, the representation of the memory appear-
ing to be of a size larger than the size of the memory, the
representation of the memory being the expanded
memory, and the size of the representation being the size
of the expanded memory; and

computer usable code for making available the expanded

memory such that the memory in the data processing
system is usable by addressing the expanded memory.

US 9,183,056 B2

17

2. The computer usable program product of claim 1, further
comprising:

computer usable code for receiving an input value corre-

sponding to a performance parameter of the data pro-
cessing system, wherein the configuring the representa-
tion includes determining the size of the representation
based on the desired size of the expanded memory, a
compression ratio of the workload, and the input value.
3. The computer usable program product of claim 2,
wherein the performance parameter is a minimum size of an
uncompressed memory pool to avoid thrashing.
4. The computer usable program product of claim 1,
wherein the size of the expanded memory excludes a size of
amemory space one of (i) used for storing a pinned page, (ii)
used for storing a protected page, and (iii) that is reserved for
use by an application.
5. The computer usable program product of claim 1, further
comprising:
computer usable code for determining whether the desired
size of the expanded memory can be made available; and

computer usable code for, responsive to the determining
being false, making the expanded memory available
such that the size of the expanded memory is different
from the desired size of the expanded memory.
6. The computer usable program product of claim 1, further
comprising:
computer usable code for determining whether the desired
size of the expanded memory can be made available; and

computer usable code for, responsive to the determining
being false, making the expanded memory available
together with information about a portion of the desired
size that cannot be made available.

7. The computer usable program product of claim 1, further
comprising:

computer usable code for receiving a second information

about one of (i) a change in the workload and (ii) a
change in the desired size of the expanded memory;
computer usable code for recomputing the size of the com-

pressed memory pool based on the second information;
and

computer usable code for adjusting the size of the com-

pressed memory pool while the data processing system
is operational.

8. The computer usable program product of claim 7,
wherein the adjusting leaves the size of the expanded memory
unchanged.

9. The computer usable program product of claim 1,
wherein addressing the expanded memory is accomplished in
the manner of addressing the memory.

10. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a data processing system, and
wherein the computer usable code is transferred over a net-
work from a remote data processing system.

11. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a server data processing system,
and wherein the computer usable code is downloaded over a
network to a remote data processing system for use in a
computer readable storage device associated with the remote
data processing system.

12. A data processing system for expanding memory size,
comprising:

a storage device, wherein the storage device stores com-

puter usable program code; and

25

30

35

40

45

60

65

18

a processor, wherein the processor executes the computer
usable program code, and wherein the computer usable
program code comprises:

computer usable code for receiving in a data processing
system having a memory, a value of a desired size, the
desired size being an amount of an expanded memory;

computer usable code for receiving a first information
about a workload in the data processing system;

computer usable code for computing a size of a com-
pressed memory pool, the compressed memory pool
being usable with the memory to make the desired size
of the expanded memory available for use with the work-
load in the data processing system;

computer usable code for configuring a representation of
the memory, the representation of the memory appear-
ing to be of a size larger than the size of the memory, the
representation of the memory being the expanded
memory, and the size of the representation being the size
of the expanded memory; and

computer usable code for making available the expanded
memory such that the memory in the data processing
system is usable by addressing the expanded memory.

13. The data processing system of claim 12, further com-
prising:

computer usable code for receiving an input value corre-
sponding to a performance parameter of the data pro-
cessing system, wherein the configuring the representa-
tion includes determining the size of the representation
based on the desired size of the expanded memory, a
compression ratio of the workload, and the input value.

14. The data processing system of claim 13, wherein the
performance parameter is a minimum size of an uncom-
pressed memory pool to avoid thrashing.

15. The data processing system of claim 12, wherein the
size of the expanded memory excludes a size of a memory
space one of (i) used for storing a pinned page, (ii) used for
storing a protected page, and (iii) that is reserved for use by an
application.

16. The data processing system of claim 12, further com-
prising:

computer usable code for determining whether the desired
size of the expanded memory can be made available; and

computer usable code for, responsive to the determining
being false, making the expanded memory available
such that the size of the expanded memory is different
from the desired size of the expanded memory.

17. The data processing system of claim 12, further com-

prising:

computer usable code for determining whether the desired
size of the expanded memory can be made available; and

computer usable code for, responsive to the determining
being false, making the expanded memory available
together with information about a portion of the desired
size that cannot be made available.

18. The data processing system of claim 12, further com-

prising:

computer usable code for receiving a second information
about one of (i) a change in the workload and (ii) a
change in the desired size of the expanded memory;

computer usable code for recomputing the size of the com-
pressed memory pool based on the second information;
and

computer usable code for adjusting the size of the com-
pressed memory pool while the data processing system
is operational.

19. The data processing system of claim 18, wherein the

adjusting leaves the size of the expanded memory unchanged.

US 9,183,056 B2
19

20. The data processing system of claim 12, wherein
addressing the expanded memory is accomplished in the
manner of addressing the memory.

#* #* #* #* #*

20

